.. Automatically generated by example2rst.py. Do not edit this file .. currentmodule:: apsw JSON Example/Tour ==================== This example shows using `JSON `__ with SQLite, and additional functionality provided by APSW to make it easier to use. .. code-block:: python #!/usr/bin/env python3 # This code uses Python's optional typing annotations. You can # ignore them and do not need to use them. If you do use them # then you must include this future annotations line first. from __future__ import annotations from typing import Any import base64 import contextvars import datetime import decimal from types import MappingProxyType from pprint import pprint import apsw import apsw.ext # A database to work on connection = apsw.Connection("") # And the table connection.execute( """CREATE TABLE items( name, shape, extra ); """ ) # This method is used to show queries and results def query(sql, bindings=None): print(f"\n\n{sql}") result = connection.execute(sql, bindings).fetchall() if len(result): pprint(result[0] if len(result) == 1 else result) .. index:: Quick start (example code) .. _example_json_quick: Quick start ----------- :ref:`Described here ` in the :doc:`JSON background and detail `. If you do not use blobs and just want it to look like SQLite has JSON as a native data type, then do the following. .. code-block:: python def convert_binding( cursor: apsw.Cursor, num: int, value: Any ) -> bytes: # called to convert unknown types - we convert to JSONB return apsw.jsonb_encode(value) def convert_jsonb( cursor: apsw.Cursor, column: int, value: bytes ) -> Any: # Called when a blob is valid JSONB. If you don't use blobs then # this is all that is needed. If you do use blobs then you can # examine information from the cursor/query to decide, shown # further down. return apsw.jsonb_decode(value) # install the callbacks connection.convert_binding = convert_binding connection.convert_jsonb = convert_jsonb example_data = { "origin": "Spain", "diameter": 7.5, "sugar": 23, "tags": ["citrus", "sweet", "juice"], } # Note how we can INSERT the data connection.execute( "INSERT INTO items VALUES(?, ?, ?)", ("orange", "round", example_data), ) # And get it back query("SELECT shape, extra FROM items WHERE name='orange'") # If you want the data returned to be read only then use this. # Note how the list becomes a tuple and dict becomes MappingProxyType # which doesn't allow writes. def convert_jsonb_readonly( cursor: apsw.Cursor, column: int, value: bytes ) -> Any: return apsw.jsonb_decode( value, array_hook=tuple, object_hook=MappingProxyType ) connection.convert_jsonb = convert_jsonb_readonly query("SELECT shape, extra FROM items WHERE name='orange'") .. code-block:: output SELECT shape, extra FROM items WHERE name='orange' ('round', {'diameter': 7.5, 'origin': 'Spain', 'sugar': 23, 'tags': ['citrus', 'sweet', 'juice']}) SELECT shape, extra FROM items WHERE name='orange' ('round', mappingproxy({'diameter': 7.5, 'origin': 'Spain', 'sugar': 23, 'tags': ('citrus', 'sweet', 'juice')})) .. index:: SQLite JSON functions (example code) .. _example_json_functions: SQLite JSON functions --------------------- SQLite has `over 30 functions `__ for dealing with JSON. Here are some of the most useful. .. code-block:: python # -> extracts a subcomponent in JSON text format. Note how origin # includes the double quotes in the response. $ is used to indicate # top level. query("SELECT extra -> '$.origin' FROM items") # ->> extracts as a SQLite value so origin in a plain string. query("SELECT extra ->> '$.origin' FROM items") # Lets get the first tag query("SELECT extra ->> '$.tags[0]' FROM items") # Iterate over each tag - you would typically use this with a JOIN query( "SELECT name, shape, value FROM items, json_each(items.extra, '$.tags')" ) .. code-block:: output SELECT extra -> '$.origin' FROM items ('"Spain"',) SELECT extra ->> '$.origin' FROM items ('Spain',) SELECT extra ->> '$.tags[0]' FROM items ('citrus',) SELECT name, shape, value FROM items, json_each(items.extra, '$.tags') [('orange', 'round', 'citrus'), ('orange', 'round', 'sweet'), ('orange', 'round', 'juice')] .. index:: Customising conversion (example code) .. _example_custom_conversion: Customising conversion ---------------------- The :meth:`~Cursor.convert_binding` and :meth:`~Cursor.convert_jsonb` functions are provided with the :class:`Cursor` as the first parameter, and a second parameter with the binding number or column being returned. You can use :attr:`Cursor.bindings_names` and :attr:`Cursor.description` for more details about the value being converted. You can also use :attr:`Cursor.connection` to get back to the connection and your own data structures. :mod:`contextvars` can be used to provide more. :func:`~apsw.jsonb_encode` and :func:`~apsw.jsonb_decode` have parameters like the :mod:`json` module functions for controlling how non-JSON Python types can be converted to JSON compatible ones, and how JSON values are converted back to Python objects. This section shows all of these in action at once! .. code-block:: python volume: contextvars.ContextVar[str] = contextvars.ContextVar( "volume", default="quiet" ) def py_to_json(value): # Used by jsonb_encode to convert types that aren't JSON compatible if isinstance(value, bytes): # base64 encode binary data. Note it returns bytes so we have to # convert to text. return base64.b64encode(value).decode("ascii") if isinstance(value, datetime.datetime): # ISO8601 return value.isoformat() if isinstance(value, decimal.Decimal): # Create JSONB bytes directly. Tag 5 is FLOAT. str of a Decimal # gives a full precision string of the value return apsw.ext.make_jsonb(5, str(value)) if isinstance(value, complex): # The above are all single values. For objects with multiple # fields we return a dict with their members and a key to # detect this return { # I made up this key as unlikely to be used in other dicts "$py$type": "complex", # fields from complex "real": value.real, "imag": value.imag, } raise TypeError(f"Can't convert {value!r}") def convert_binding(cursor: apsw.Cursor, num: int, value: Any): # note that binding numbers start at 1 print(f"\nconvert_binding callback {num=} {value=!r:.20}...") print(f"{cursor.bindings_count=}") print(f"{cursor.bindings_names=}") print(f"contextvar {volume.get()=}") return apsw.jsonb_encode(value, default=py_to_json) connection.convert_binding = convert_binding # The above deals with conversion to JSONB, now deal with # conversion from JSONB def object_hook(value: dict): # We will use this to convert back to a Python type match value.get("$py$type"): case None: # Doesn't have this key, so return as is return value case "complex": return complex(value["real"], value["imag"]) case _: raise ValueError("Unknown $py$type") def convert_jsonb(cursor: apsw.Cursor, num: int, value: bytes): print(f"\nconvert_jsonb callback {num=} {value=!r:.20}...") # the description will contain the column names, declared types and # more if using description_full print(f"columns are {[col[0] for col in cursor.description]}") print(f"contextvar {volume.get()=}\n") # We want decimal to handle float conversion because it has more # precision return apsw.jsonb_decode( value, object_hook=object_hook, parse_float=decimal.Decimal ) connection.convert_jsonb = convert_jsonb example_data = { "binary": b"\x01\x73\x94\x65", "date stamp": datetime.datetime.now(), "decimal": decimal.Decimal( "0.7843262344923523492342352344523423423423" ), "complex": 3 + 4j, } # Use the contextvar with volume.set("loud"): query( "SELECT $name AS scope, $data AS hello", { "name": "test", "data": example_data, }, ) .. code-block:: output SELECT $name AS scope, $data AS hello convert_binding callback num=2 value={'binary': b'\x01s\x... cursor.bindings_count=2 cursor.bindings_names=('name', 'data') contextvar volume.get()='loud' convert_jsonb callback num=1 value=b'\xec\x00\x00\x00\x... columns are ['scope', 'hello'] contextvar volume.get()='loud' ('test', {'binary': 'AXOUZQ==', 'complex': (3+4j), 'date stamp': '2025-11-05T09:18:18.227466', 'decimal': Decimal('0.7843262344923523492342352344523423423423')}) .. index:: Cleanup (example code) .. _example_jsonb_cleanup: Cleanup ------- No cleanup is needed. Converters are automatically cleared when connections and cursors are no longer used.