JSON Example/Tour

This example shows using JSON with SQLite, and additional functionality provided by APSW to make it easier to use.

#!/usr/bin/env python3

# This code uses Python's optional typing annotations.  You can
# ignore them and do not need to use them.  If you do use them
# then you must include this future annotations line first.
from __future__ import annotations
from typing import Any

import base64
import contextvars
import datetime
import decimal
from types import MappingProxyType

from pprint import pprint

import apsw
import apsw.ext

# A database to work on
connection = apsw.Connection("")

# And the table
connection.execute(
    """CREATE TABLE items(
        name,
        shape,
        extra
    );
"""
)


# This method is used to show queries and results
def query(sql, bindings=None):
    print(f"\n\n{sql}")
    result = connection.execute(sql, bindings).fetchall()
    if len(result):
        pprint(result[0] if len(result) == 1 else result)

Quick start

Described here in the JSON background and detail.

If you do not use blobs and just want it to look like SQLite has JSON as a native data type, then do the following.

def convert_binding(
    cursor: apsw.Cursor, num: int, value: Any
) -> bytes:
    # called to convert unknown types - we convert to JSONB
    return apsw.jsonb_encode(value)


def convert_jsonb(
    cursor: apsw.Cursor, column: int, value: bytes
) -> Any:
    # Called when a blob is valid JSONB.  If you don't use blobs then
    # this is all that is needed.  If you do use blobs then you can
    # examine information from the cursor/query to decide, shown
    # further down.
    return apsw.jsonb_decode(value)


# install the callbacks
connection.convert_binding = convert_binding
connection.convert_jsonb = convert_jsonb

example_data = {
    "origin": "Spain",
    "diameter": 7.5,
    "sugar": 23,
    "tags": ["citrus", "sweet", "juice"],
}

# Note how we can INSERT the data
connection.execute(
    "INSERT INTO items VALUES(?, ?, ?)",
    ("orange", "round", example_data),
)

# And get it back
query("SELECT shape, extra FROM items WHERE name='orange'")

# If you want the data returned to be read only then use this.
# Note how the list becomes a tuple and dict becomes MappingProxyType
# which doesn't allow writes.


def convert_jsonb_readonly(
    cursor: apsw.Cursor, column: int, value: bytes
) -> Any:
    return apsw.jsonb_decode(
        value, array_hook=tuple, object_hook=MappingProxyType
    )


connection.convert_jsonb = convert_jsonb_readonly

query("SELECT shape, extra FROM items WHERE name='orange'")
SELECT shape, extra FROM items WHERE name='orange'
('round',
 {'diameter': 7.5,
  'origin': 'Spain',
  'sugar': 23,
  'tags': ['citrus', 'sweet', 'juice']})


SELECT shape, extra FROM items WHERE name='orange'
('round',
 mappingproxy({'diameter': 7.5,
               'origin': 'Spain',
               'sugar': 23,
               'tags': ('citrus', 'sweet', 'juice')}))

SQLite JSON functions

SQLite has over 30 functions for dealing with JSON. Here are some of the most useful.

# -> extracts a subcomponent in JSON text format.  Note how origin
# includes the double quotes in the response.  $ is used to indicate
# top level.
query("SELECT extra -> '$.origin' FROM items")

# ->> extracts as a SQLite value so origin in a plain string.
query("SELECT extra ->> '$.origin' FROM items")

# Lets get the first tag
query("SELECT extra ->> '$.tags[0]' FROM items")

# Iterate over each tag - you would typically use this with a JOIN
query(
    "SELECT name, shape, value FROM items, json_each(items.extra, '$.tags')"
)
SELECT extra -> '$.origin' FROM items
('"Spain"',)


SELECT extra ->> '$.origin' FROM items
('Spain',)


SELECT extra ->> '$.tags[0]' FROM items
('citrus',)


SELECT name, shape, value FROM items, json_each(items.extra, '$.tags')
[('orange', 'round', 'citrus'),
 ('orange', 'round', 'sweet'),
 ('orange', 'round', 'juice')]

Customising conversion

The convert_binding() and convert_jsonb() functions are provided with the Cursor as the first parameter, and a second parameter with the binding number or column being returned. You can use Cursor.bindings_names and Cursor.description for more details about the value being converted. You can also use Cursor.connection to get back to the connection and your own data structures. contextvars can be used to provide more.

jsonb_encode() and jsonb_decode() have parameters like the json module functions for controlling how non-JSON Python types can be converted to JSON compatible ones, and how JSON values are converted back to Python objects.

This section shows all of these in action at once!

volume: contextvars.ContextVar[str] = contextvars.ContextVar(
    "volume", default="quiet"
)


def py_to_json(value):
    # Used by jsonb_encode to convert types that aren't JSON compatible
    if isinstance(value, bytes):
        # base64 encode binary data.  Note it returns bytes so we have to
        # convert to text.
        return base64.b64encode(value).decode("ascii")

    if isinstance(value, datetime.datetime):
        # ISO8601
        return value.isoformat()

    if isinstance(value, decimal.Decimal):
        # Create JSONB bytes directly.  Tag 5 is FLOAT.  str of a Decimal
        # gives a full precision string of the value
        return apsw.ext.make_jsonb(5, str(value))

    if isinstance(value, complex):
        # The above are all single values.  For objects with multiple
        # fields we return a dict with their members and a key to
        # detect this
        return {
            # I made up this key as unlikely to be used in other dicts
            "$py$type": "complex",
            # fields from complex
            "real": value.real,
            "imag": value.imag,
        }

    raise TypeError(f"Can't convert {value!r}")


def convert_binding(cursor: apsw.Cursor, num: int, value: Any):
    # note that binding numbers start at 1
    print(f"\nconvert_binding callback {num=} {value=!r:.20}...")
    print(f"{cursor.bindings_count=}")
    print(f"{cursor.bindings_names=}")
    print(f"contextvar {volume.get()=}")

    return apsw.jsonb_encode(value, default=py_to_json)


connection.convert_binding = convert_binding

# The above deals with conversion to JSONB, now deal with
# conversion from JSONB


def object_hook(value: dict):
    # We will use this to convert back to a Python type
    match value.get("$py$type"):
        case None:
            # Doesn't have this key, so return as is
            return value
        case "complex":
            return complex(value["real"], value["imag"])
        case _:
            raise ValueError("Unknown $py$type")


def convert_jsonb(cursor: apsw.Cursor, num: int, value: bytes):
    print(f"\nconvert_jsonb callback {num=} {value=!r:.20}...")
    # the description will contain the column names, declared types and
    # more if using description_full
    print(f"columns are {[col[0] for col in cursor.description]}")
    print(f"contextvar {volume.get()=}\n")

    # We want decimal to handle float conversion because it has more
    # precision
    return apsw.jsonb_decode(
        value, object_hook=object_hook, parse_float=decimal.Decimal
    )


connection.convert_jsonb = convert_jsonb

example_data = {
    "binary": b"\x01\x73\x94\x65",
    "date stamp": datetime.datetime.now(),
    "decimal": decimal.Decimal(
        "0.7843262344923523492342352344523423423423"
    ),
    "complex": 3 + 4j,
}

# Use the contextvar
with volume.set("loud"):
    query(
        "SELECT $name AS scope, $data AS hello",
        {
            "name": "test",
            "data": example_data,
        },
    )
SELECT $name AS scope, $data AS hello

convert_binding callback num=2 value={'binary': b'\x01s\x...
cursor.bindings_count=2
cursor.bindings_names=('name', 'data')
contextvar volume.get()='loud'

convert_jsonb callback num=1 value=b'\xec\x00\x00\x00\x...
columns are ['scope', 'hello']
contextvar volume.get()='loud'

('test',
 {'binary': 'AXOUZQ==',
  'complex': (3+4j),
  'date stamp': '2025-11-05T09:18:18.227466',
  'decimal': Decimal('0.7843262344923523492342352344523423423423')})

Cleanup

No cleanup is needed. Converters are automatically cleared when connections and cursors are no longer used.